Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass
نویسندگان
چکیده
Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. 'Holdfast' was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10-60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue.
منابع مشابه
Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation
Rising atmospheric CO2 concentrations can fertilize plant growth. The resulting increased plant uptake of CO2 could, in turn, slow increases in atmospheric CO2 levels and associated climate warming. CO2 fertilization e ects may be enhanced when water availability is low, because elevated CO2 also leads to improved plant water-use e ciency. However, CO2 fertilization e ects may be weaker when pl...
متن کاملInsects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey. and the C4 grass Spartina patens (Ait.) Mobl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections ...
متن کاملElevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass
Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C:N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such chan...
متن کاملElevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions
The predominant input of available nitrogen (N) in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the c...
متن کاملPredicting adaptive evolution under elevated atmospheric CO2 in the perennial grass Bromus erectus
Increasing concentrations of CO2 in the atmosphere are likely to affect the ecological dynamics of plant populations and communities worldwide, yet little is known about potential evolutionary consequences of high CO2. We employed a quantitative genetic framework to examine how the expression of genetic variation and covariation in fitnessrelated traits, and thus, the evolutionary potential of ...
متن کامل